In 2017, the 3A Institute was created as the first of the innovation institutes at the Australian National University, intended as structures adjacent to established research and teaching programs to explore new education models and pathways towards the application of research.

3Ai sits within the School of Cybernetics, and is focused on guiding and accelerating into existence a new branch of engineering centred on cyber-physical systems and artificial intelligence. We are building the skills and knowledge we need to help shape the future safely, sustainably and responsibly.

As people invent, commercialise and operationalise new technologies, new practitioners emerge to manage them. Just as the invention of programmable computers led to the professionalisation of software engineers, cyber-physical systems will lead to a new type of engineer.

We don’t know what this new type of engineering will be called yet, but we know we need it if we are to build a safe, sustainable and responsible future.

The Master of Applied Cybernetics is the flagship program of the 3A Institute. It is an experiment in education that is bringing together people from a range of disciplines, professional backgrounds and life experiences to help shape what a new branch of engineering might look like. Rather than simply imagining and theorising what a more responsible, sustainable future for AI might look like, 3Ai is bringing it into existence through interdisciplinary learning.

Asking the right questions#

As we stand on the brink of cyber-physical systems at scale, we need to start by asking the right questions.

Since the inception of the 3A Institute in 2017, we have been exploring and refining the questions that are central to a new branch of engineering to ensure the safe, sustainable and responsible development of cyber-physical systems. These questions look beyond the software and hardware in the lab, and contemplate what happens when technologies are let loose on the world – are taken up by many different organisations and governments, are connected to other intelligent systems, and go to other places in the world from where they were designed.


Questions about autonomy aren’t just technical questions like “how do we make the car brake when it needs to?” – they are also social, regulatory and public policy questions, which will be different for each use and context. Just because we can make a system autonomous, should we? How do we think about degrees of autonomy? How is an autonomous system different to an automated system? When we translate human processes into autonomous processes, what do we need to consider?


As the ability for machines to act independently of human oversight increases, questions need to be asked about how much agency we give cyber-physical systems. To what degree should the system be able to make decisions without human intervention? If a system learns, should we allow it to independently change its behaviour? And if so, does the system bear any responsibility for its actions? What is the override system and who has access?


Technological progress necessitates new regulatory tools and processes, as systems designed in one place are introduced into different settings around the world, with access to new data. How do we preserve our safety and values? What are the mechanisms for assessing and managing safety, security and policing concerns? How do we reassure users and the wider community that the system is safe? To what laws and regulations is the system subject to, and are they adequate?

3Ai was founded on these 3 questions-–-and we have since imagined more. And will likely imagine more still!

Interfaces: throughout the 20th century we used keyboards and screens as interfaces with computers. What interfaces will new CPS use? How will people know they are interacting with an AI system? Does the type of interface change our relationship with technology? What’s next beyond the field of Human-Computer Interaction?

Indicators: the world is changing. Commercial measures of success such as productivity and efficiency used without reference to safety, sustainability and responsibility rarely cut it anymore. What measures of performance and success should we use for CPS and AI? How do we account for unintended consequences? How might we change the intent of the system through our choice of metrics?

Intent: the last set of questions, but in some ways the first. A focus on safety, sustainability and responsibility means that we must deeply interrogate the intent – explicit and implicit – in building a system. Why does this CPS exist? Who does it serve? What is the power relationship between those who commission it, those who design and implement it and those whose lives are impacted by it?

As we stand on the brink of cyber-physical systems at scale, we start by asking the right questions.

You are on Aboriginal land.

The Australian National University acknowledges, celebrates and pays our respects to the Ngunnawal and Ngambri people of the Canberra region and to all First Nations Australians on whose traditional lands we meet and work, and whose cultures are among the oldest continuing cultures in human history.

bars search times arrow-up